
Attribute Grammars 



Attribute Grammars were invented by Don Knuth 
as a way to unify all of the stages of compiling into 
one.  They give a formal way to pass semantic 
information (types, values, etc.) around a parse 
tree. 
 
We now allow any grammar symbol X to have 
attributes.  The attribute a of symbol X is denoted 
X.a 



If there is a grammar rule 
 P:  X0 ::= X1X2...Xk 

then a semantic rule for P computes the value of 
some attribute of one of the Xi in terms of other 
attributes of symbols in the rule. 
 
If you think of the rule as forming the node of a tree, 
an attribute of a node gets its value from the 
attribute of its parent, siblings and children (but not 
from its grandparent, for example). 



A syntax-directed definition (SDD) is a triple (G,A,R) 
where G is a context-free grammar, A is a set of 
attributes, and R is the set of semantic rules for G. 



Example: Grammar symbols E, T, and F all have one 
attribute val.  Where necessary we put subscripts on 
the grammar symbols to distinguish the child from 
the parent.   
 

E  ::= E1+T  {E.val = E1.val + T.val} 
E  ::= T  {E.val = T.val} 
T  ::= T1*F  {T.val = T1.val*F.val} 
T  ::= F  {T.val = F.val} 
F  ::= num {F.val = num} 



With this grammar the expression 2+3*5 parses to 

Note that the attributes implement the natural 
semantics of this simple language. 



We say that an attribute X.a is synthesized if there is 
a grammar rule X ::= a and X.a is defined in terms of 
the attributes of the elements of a.  We say that X.a 
is inherited if there is a rule Y ::= aXb and X.a is 
defined  in terms of the attributes of Y, a, and b.   
 
In other words, synthesized attributes get their 
values from their children while inherited attributes 
get their values from their parent and siblings 



In the E ::= E+T example a from a few slides ago the 
attributes are all synthesized -- passed from the 
leaves up; evaluation of such attributes can be done 
easily in a bottom-up pass through the tree. 



Here is an example that uses attributes for 
automatic type evaluation. The st attribute is a 
symbol table -- a list of (id,type) pairs.   
 

S ::= DEC {S.st = DEC.st} 
S ::= S1 DEC {S.st = S1.st || DEC.st} (||=concatenate) 
DEC ::= T L ; {L.type = T.type; DEC.st = L.st} 
T ::= int {T.type = int} 
T ::= string {T.type = string} 
L ::= id {L.st = (id.name, L.type)} 
L ::= L1, id  {L1.type = L.type; L.st = L1.st || (id.name, L.type)} 
 

Note that L.type is inherited, but the st attribute is 
synthesized. 



Here is the attributed tree this grammar generates 
for  
 int a, b, c; 
 string s; 



A grammar is L-attributed if each attribute defined 
in a rule  A ::= X1...Xk is either 

a) Synthesized (i.e., an attribute of A) 
b) An inherited attribute of some Xi that 

depends only on the inherited attributes of A 
and the attributes of Xj for j < i 
 

 



We can evaluate the attributes in an L-attributed 
grammar in a bottom-up, left-to-right pass using the 
following invariant: 
 

When we get to a node during parsing, we must 
have all of the information we need to evaluate 
its inherited attributes.  Before we leave the node 
we must have all of the information we need to 
evaluate its synthesized attributes. 



Here is an example that evaluates fractional binary 
strings, such as .101 (which is 1/2+1/8, or 5/8) 
 

N ::= .L {N.v = L.v; L.c = -1} 
L ::= B L1 {L.v=B.v+L1.v; L1.c=L.c-1; B.c=L.c} 
L ::= e {L.v=0} 
B ::= 0 {B.v=0} 
B ::= 1 {B.v=2B.c} 
 

Note that L.c is inherited, while L.v is synthesized. 



Here we use this grammar to parse and evaluate the 
string .1001 



To write a recursive descent parser for an L-
attributed grammar apply the following pattern. 
 
For rule A ::= X1...Xk the function A() that parses 
this rule should have as arguments all of the 
inherited attributes for A; before it returns it 
should evaluate all of the synthesized attributes of 
A.  



A translation scheme has the same information as 
an L-attributed grammar but provides an ordering 
for the parsing and attribute evaluation. 
 
For example, the previous grammar could be 
written 
 

N ::= . {L.c = -1} L {N.v = L.v} 
L ::= {B.c = L.c} B {L1.c=L.c-1} L1 {L.v=B.v+L1. v} 
L ::= e {L.v=0} 
B ::= 0 {B.v=0} 
B ::= 1 {B.v=2B.c} 

 
  



Here is a more realistic example of attribute 
grammars. This produces "assembly code" for an if-
then-else statement. 
 
Starting grammar: 
 S ::= if (E) S | if (E) S else S | <other stuff> 
 
We will use 3 "assembly language" instructions: 
 JMPF label  conditional branch 
 JMP label  unconditional branch 
 LABEL lab  place a label 



We want to produce something like this: 

if (e) s 
-------------- 
code for e 
JMPF L1 
code for s 
LABEL L1 

if (e) s1 else s2 

---------------------- 
code for e 
JMPF L1 
code for s1 

JMP L2 
LABEL L1 
code for s2 

LABEL L2 



First, left-factor the grammar so we can parse it: 
 S ::= if (E) S TAIL 
 S ::= <other stuff> 
 TAIL ::= else S 
 TAIL ::= e    
 
We will give S two inherited attributes: 
 S.temp and S.label 
We give TAIL one synthesized attribute:  
 TAIL.label 



Here is the translation scheme: 
 S ::= if (E) {TAIL.label = new label(); 
          emit( "JMPF", TAIL.label)} S1 TAIL 
 S ::= <other stuff> 
 TAIL ::=  else {S.temp=new label();  
   emit( "JMP", s.temp); 
   emit( "LABEL", TAIL.label); } 
   S {emit("LABEL", s.temp);} 
 TAIL ::= e {emit( "LABEL", TAIL.label);} 
        



The expression 
 if (e1) { 
        if (e2) 
               s1 
        else 
               s2 
 } 

generates the following: 
 code for e1 
 JMPF L1 
 code for e2 
 JMPF L2 
 code for s1 
 JMP L3 
 LABEL L2 
 code for s2 
 LABEL L3 
 LABEL L1 



The expression 
 if (e1) { 
        if (e2) 
               s1 
 } 
 else 
        s2 

generates the following: 
 code for e1 
 JMPF L1 
 code for e2 
 JMPF L2 
 code for s1 
 LABEL L2 
 JMP L3 
 LABEL L1 
 code for s2 
 LABEL L3 


