
Attribute Grammars

Attribute Grammars were invented by Don Knuth
as a way to unify all of the stages of compiling into
one. They give a formal way to pass semantic
information (types, values, etc.) around a parse
tree.

We now allow any grammar symbol X to have
attributes. The attribute a of symbol X is denoted
X.a

If there is a grammar rule
 P: X0 ::= X1X2...Xk

then a semantic rule for P computes the value of
some attribute of one of the Xi in terms of other
attributes of symbols in the rule.

If you think of the rule as forming the node of a tree,
an attribute of a node gets its value from the
attribute of its parent, siblings and children (but not
from its grandparent, for example).

A syntax-directed definition (SDD) is a triple (G,A,R)
where G is a context-free grammar, A is a set of
attributes, and R is the set of semantic rules for G.

Example: Grammar symbols E, T, and F all have one
attribute val. Where necessary we put subscripts on
the grammar symbols to distinguish the child from
the parent.

E ::= E1+T {E.val = E1.val + T.val}
E ::= T {E.val = T.val}
T ::= T1*F {T.val = T1.val*F.val}
T ::= F {T.val = F.val}
F ::= num {F.val = num}

With this grammar the expression 2+3*5 parses to

Note that the attributes implement the natural
semantics of this simple language.

We say that an attribute X.a is synthesized if there is
a grammar rule X ::= a and X.a is defined in terms of
the attributes of the elements of a. We say that X.a
is inherited if there is a rule Y ::= aXb and X.a is
defined in terms of the attributes of Y, a, and b.

In other words, synthesized attributes get their
values from their children while inherited attributes
get their values from their parent and siblings

In the E ::= E+T example a from a few slides ago the
attributes are all synthesized -- passed from the
leaves up; evaluation of such attributes can be done
easily in a bottom-up pass through the tree.

Here is an example that uses attributes for
automatic type evaluation. The st attribute is a
symbol table -- a list of (id,type) pairs.

S ::= DEC {S.st = DEC.st}
S ::= S1 DEC {S.st = S1.st || DEC.st} (||=concatenate)
DEC ::= T L ; {L.type = T.type; DEC.st = L.st}
T ::= int {T.type = int}
T ::= string {T.type = string}
L ::= id {L.st = (id.name, L.type)}
L ::= L1, id {L1.type = L.type; L.st = L1.st || (id.name, L.type)}

Note that L.type is inherited, but the st attribute is
synthesized.

Here is the attributed tree this grammar generates
for
 int a, b, c;
 string s;

A grammar is L-attributed if each attribute defined
in a rule A ::= X1...Xk is either

a) Synthesized (i.e., an attribute of A)
b) An inherited attribute of some Xi that

depends only on the inherited attributes of A
and the attributes of Xj for j < i

We can evaluate the attributes in an L-attributed
grammar in a bottom-up, left-to-right pass using the
following invariant:

When we get to a node during parsing, we must
have all of the information we need to evaluate
its inherited attributes. Before we leave the node
we must have all of the information we need to
evaluate its synthesized attributes.

Here is an example that evaluates fractional binary
strings, such as .101 (which is 1/2+1/8, or 5/8)

N ::= .L {N.v = L.v; L.c = -1}
L ::= B L1 {L.v=B.v+L1.v; L1.c=L.c-1; B.c=L.c}
L ::= e {L.v=0}
B ::= 0 {B.v=0}
B ::= 1 {B.v=2B.c}

Note that L.c is inherited, while L.v is synthesized.

Here we use this grammar to parse and evaluate the
string .1001

To write a recursive descent parser for an L-
attributed grammar apply the following pattern.

For rule A ::= X1...Xk the function A() that parses
this rule should have as arguments all of the
inherited attributes for A; before it returns it
should evaluate all of the synthesized attributes of
A.

A translation scheme has the same information as
an L-attributed grammar but provides an ordering
for the parsing and attribute evaluation.

For example, the previous grammar could be
written

N ::= . {L.c = -1} L {N.v = L.v}
L ::= {B.c = L.c} B {L1.c=L.c-1} L1 {L.v=B.v+L1. v}
L ::= e {L.v=0}
B ::= 0 {B.v=0}
B ::= 1 {B.v=2B.c}

Here is a more realistic example of attribute
grammars. This produces "assembly code" for an if-
then-else statement.

Starting grammar:
 S ::= if (E) S | if (E) S else S | <other stuff>

We will use 3 "assembly language" instructions:
 JMPF label conditional branch
 JMP label unconditional branch
 LABEL lab place a label

We want to produce something like this:

if (e) s

code for e
JMPF L1
code for s
LABEL L1

if (e) s1 else s2

code for e
JMPF L1
code for s1

JMP L2
LABEL L1
code for s2

LABEL L2

First, left-factor the grammar so we can parse it:
 S ::= if (E) S TAIL
 S ::= <other stuff>
 TAIL ::= else S
 TAIL ::= e

We will give S two inherited attributes:
 S.temp and S.label
We give TAIL one synthesized attribute:
 TAIL.label

Here is the translation scheme:
 S ::= if (E) {TAIL.label = new label();
 emit("JMPF", TAIL.label)} S1 TAIL
 S ::= <other stuff>
 TAIL ::= else {S.temp=new label();
 emit("JMP", s.temp);
 emit("LABEL", TAIL.label); }
 S {emit("LABEL", s.temp);}
 TAIL ::= e {emit("LABEL", TAIL.label);}

The expression
 if (e1) {
 if (e2)
 s1
 else
 s2
 }

generates the following:
 code for e1
 JMPF L1
 code for e2
 JMPF L2
 code for s1
 JMP L3
 LABEL L2
 code for s2
 LABEL L3
 LABEL L1

The expression
 if (e1) {
 if (e2)
 s1
 }
 else
 s2

generates the following:
 code for e1
 JMPF L1
 code for e2
 JMPF L2
 code for s1
 LABEL L2
 JMP L3
 LABEL L1
 code for s2
 LABEL L3

